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A study of the flow within the critical layer of a forced Rossby-wave is made, using 
a high-resolution numerical model. The possibility of growth of disturbances through 
barotropic instability and the extent to which these disturbances modify the 
subsequent time evolution is of particular interest. The flow is characterized by a 
parameter p, equal to the cross-stream lengthscale divided by a downstream 
wavelength. In the long-wavelength case, p -4 1,  where there is a clear conceptual 
division between the instability and the basic flow, the results of the simulation 
confirm the importance of the growing and saturating disturbances in rearranging 
the vorticity within the critical layer. When the wavelength is not so long, the 
distinction between the instability and the straightforward time evolution of the 
basic flow is less clear. Nonetheless for p < 0.25 the ultimate evolution is still 
sensitive to the details of the initial perturbations and in this sense the flow may be 
regarded as being unstable. The time-integrated absorptivity of the critical layer 
may be considerably increased by the effects of the instability, sometimes to three or 
four times that predicted by the Stewartson-Warn-Warn solution. The nature of the 
flow, at least during the period in which the dynamics are essentially inviscid, does 
not seem to change when higher harmonics to  the forced wave are resonant. The 
behaviour seen in Bhland’s (1976) numerical model is re-examined in the light of 
these findings. A simple model of the redistribution of vorticity by the unstable 
disturbances is formulated, and its predictions are shown to agree well with the 
numerical simulations. 

1. Introduction 
This paper will be concerned with Rossby-wave critical layers in which the role of 

dissipative processes is relatively minor, the flow in the critical layer is highly 
nonlinear and the vorticity field is evolving in time. This is the parameter regime that 
seems most relevant to many geophysical flows, a t  least in the sense that the fluid- 
dynamical processes found to take place in the critical layer are also believed to be 
those that are often important on large scales in the atmosphere and the ocean. 
State-of-the-art reviews of the theory of critical layers, including summaries of the 
physical background which motivates such theory, have been given by Stewartson 
(1981), and Maslowe (1986). Here it is simply noted that continuing interest in the 
Rossby-wave problem seems justified because the nonlinear Rossby-wave critical 
layer provides a paradigm for the phenomenon of Rossby-wave breaking, which is 
proving a valuable organizing concept in the search for understanding of realistic, 
and highly complicated, large-scale atmospheric flows (see McIntyre & Palmer 1985 
and references). It is being appreciated that many such flows are highly 
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inhomogeneous, with regions in which the flow appears wave-like adjoining others in 
which it appears essentially nonlinear. Whilst there have been a number of successful 
attempts to simulate such flows in numerical models (see, for exa,mple, Held & 
Phillips 1987 ; Juckes & Mcintyre 1987) nonlinear critical-layer theory, which applies 
to  a limiting dass of such flows, remains attractive, because i t  includes a natural 
quantitative description of the dynamical interaction between the different regions. 

The work of Stewartson (1978) and Warn & Warn (1978) has allowed considerable 
progress in our understanding of time-dependent, nonlinear, Rossby-wave critical 
layers for two reasons. First, they were able to apply the method of matched 
asymptotic expansions to the problem, treating the critical layer as an inner region. 
The equations of motion for the whole flow were then reduced to a single hyperbolic 
equation for the vorticity within the critical layer. This, by itself, was a considerable 
advance, since the evolution has a straightforward physical interpretation and, 
although the new evolution equation required numerical methods for its solution, 
numerical resources could be concentrated in the critical layer. There was no need to 
use numerical methods to solve throughout the much larger flow domain away from 
the critical layer as well, as had been the case in earlier investigations by Bdland 
(1976, 1978), for example. Nonetheless, the solution of the evolution equation in the 
critical layer still represented a formidable numerical problem, and Warn & Warn 
(1978) found that it was  possible to integrate only for a relatively short time before 
features in the vorticity field of scale comparable with the numerical resolution were 
generated. The second important development was therefore the discovery jointly by 
Stewartson (1978) and Warn & Warn (1978) of special cases permitting analytical 
solution of the critical-layer equations. The analytical solution (noted by Stewartson) 
provides a self-consistent description of the flow for a particular set of external 
parameter values (noted by Warn & Warn). The Stewartson-Warn-Warn solution 
(hereinafter termed the SWW solution) allowed, for those special cases, firm and 
reliable predictions about the time evolution of the critical layer, and was immune 
to any criticism of insufficient numerical resolution, unlike some of the earlier work 
on this problem. 

One of the interesting predictions of the SWW solution is that  the critical layer 
evolves from a state in which it absorbs incident Rossby waves, through a perfectly 
reflecting state, and into an over-reflecting state. The earlier numerical results of 
Geisler & Dickinson (1974) and Bdland (1976, 1978) are in broad agreement with this, 
indicating that the numerical models used by these authors were at least adequate 
to reproduce this aspect of the behaviour. While Bdland’s model included up to seven 
zonal harmonics, that of Geisler & Dickinson included the zonal mean and only one 
harmonic. The success of the latter might therefore be considered surprising and a 
recent paper by Haynes & Mcintyre (1987) discusses this point in some detail. The 
SWW solution further indicates that, as time increases, the critical layer oscillates 
from an over-reflecting state to an absorbing state and back again. These oscillations 
decrease in amplitude, so that, after a long time, the critical layer approaches a state 
of perfect reflection. (This decay is not reproduced by single-harmonic models.) At 
this stage the vorticity pattern in the critical layer is predicted (in the absence of 
dissipation) to have extremely fine spatial structure. For this reason such large times 
are completely beyond the range of validity of any numerical model which is 
effectively dissipationless, whether or not it exploits the matched asymptotic 
formalism. 

The absorbing and reflecting properties of the critical layer may be understood in 
quite general terms, without reference to any particular solution for the flow, by 
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considering the behaviour of a certain conservable wave quantity A ,  that  satisfies a 
conservation relation of the form 

i3A 
- + V . F =  S ,  
at 

which is valid a t  finite amplitude. The expressions for the pseudomomentum A and 
the flux F are given by Killworth & McIntyre (1985) and the dissipative term S is 
given by Haynes (1988). Their explicit forms are not required for this discussion. The 
conservation relation (1 .1)  does allow us, within certain well-known limitations, to 
make precise such ideas as absorption and reflection. For instance, if the integral of 
the normal component of F over a surface bounding a region has the appropriate 
sign, then we may say that such a region is acting as a net absorber of waves. In  the 
absence of dissipation and if a wave train is incident on the critical layer, it acts as 
an absorber initially for the simple reason that, as the waves arrive, the amount of 
wave activity in the vicinity of the critical line increases. In  the presence of 
dissipation there is the possibility that the rate of dissipation of wave activity can 
subsequently balance the convergence of F. Thus dissipative critical layers could in 
principle act as absorbers in the steady state. 

On the other hand, if there is no overt dissipation, then long-term absorption can 
occur only if the amount of wave activity in the critical layer continues to increase. 
Of course, there is no a priori reason why this should not be the case, but, a t  least 
for the case of Rossby waves on a zonally symmetric flow, Killworth & McIntyre 
(1985) showed that the integral of the wave activity over a certain region may be 
bounded by a function of the width of that region and the vorticity field which pre- 
existed in it. They deduced that the time integral of the flux, F into this region, which 
they called the time-integrated absorptivity, was finite. Moreover they showed that 
this conclusion was not changed by introducing dissipation in a certain, fairly wide 
class of cases, including some of geophysical interest. 

It should be emphasized that the preceding discussion is independent of the details 
of the flow in the critical layer ; the value of the SWW solution is that it provides an 
illuminating and specific example of the absorption-reflection behaviour and its 
dynamical mechanism. 

Given the SWW solution as a benchmark case, it is natural t o  ask what aspects of 
critical-layer evolution it does not capture. This line of enquiry has recently led to the 
following two questions being posed. First, to what extent is the behaviour which i t  
predicts representative of that of flows for which the external parameters do not take 
the special values required for the solution to be valid? Secondly, is the flow which 
it represents physically realizable ? 

Regarding the first point, it  was made clear in Stewartson (1978) and Warn & 
Warn (1978) (hereinafter referred to as SWW) that the analytic solution was only 
valid €or certain special configurations of the flow boundaries. Indeed, Warn & Warn 
integrated the critical-layer equations numerically in other cases and showed that 
the flow evolution could be considerably different (see their figure 4, for example). A 
larger range of cases has recently been investigated by Ritchie (1985), concentrating 
in particular on flow configurations for which the forced wave, or one of its higher 
harmonics, is close to resonance, unlike the SWW case. In  some circumstances 
Ritchie found that the streamlines in the critical layer become considerably 
distorted, often forming multiple closed cat’s eyes. 

Regarding the second point, it has recently been shown by Killworth & McIntyre 
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(1985) that the flow described by the SWW solution is unstable. They show that the 
fastest-growing disturbances have much shorter wavelength than the forced wave 
and consequently grow very rapidly compared i i t h  the time development of the 
SWW flow. This scale separation in time and space allows the instability problem to 
be reduced, a t  each position along the critical layer, and a t  each time in its evolution, 
to the classical one of that for disturbances to a steady unidirectional flow. The 
appropriate flow to consider is that with velocity profile equal to the basic-state shear 
and absolute vorticity profile given by the SWW solution a t  the position and time 
of interest. On this basis Killworth & McIntyre calculated the growth rates of small- 
amplitude unstable disturbances and Haynes (1985) used numerical methods to 
follow the growth very accurately to finite amplitude, thereby demonstrating that 
the disturbances could drastically rearrange the absolute vorticity field within the 
critical layer and thus drastically change the absorption-reflection properties. 

The objective of this paper is partly to assess the effect of the instability on the 
critical-layer flow as a whole, particularly regarding the absorption-reflection 
behaviour. ‘Local ’ calculations of the type described in the preceding paragraph 
cannot make quantitative predictions about such effects, beyond the fact that they 
could be considerable. Instead a numerical model which can successfully simulate the 
evolution of the entire critical layer must be used. A model similar to those used by 
Warn & Warn (1978) and Ritchie (1985), which exploit the economy of the matched- 
asymptotics approach but allow the flow to have quite general structure in the 
streamwise direction, is appropriate. Indeed, the fact that the instability did not 
appear to arise in either of the latter investigations provides a strong case for further 
work to find out why this was so. The second objective of this paper is therefore to 
set the instability in the context of other critical-layer work, and to assess the 
parameter ranges in which it is likely to be dominant and those in which other effects 
such as resonance might be more important. 

In $2 a brief description is given of the analysis that leads to a closed set of 
equations for the motion within the critical layer, which forms an inner region for the 
purposes of the matched-asymptotics formulation. I n  $ 3 the numerical method used 
for solving the critical-layer equations is set out, in some detail for those aspects 
which are non-standard. This leaves the way open for an account of the main series 
of numerical experiments in $4. Beland’s (1976) results showed behaviour which, at 
first sight could have been the result of instability, or of resonance. His numerical 
experiments are re-examined in $5 in order to determine which of these was most 
likely to be important. 

The emphasis in this paper is on numerical simulations which resolve the fluid- 
dynamical details of the flow in the critical layer. However, given the results of these 
simulations, it is interesting to compare them with results obtained from a model in 
which mixing by the unstable eddies is represented in a very simple way. One 
possible model is discussed in $6  and is applied to the flow predicted by the SWW 
solution. Concluding remarks are made in $7. 

2. Mathematical formulation 
2.1. The critical-layer equations 

We shall consider the problem, originally studied by Stewartson (1978) and Warn & 
Warn (1978), of disturbances to a two-dimensional shear flow on a beta-plane. The 
geometry is described by Cartesian coordinates x, y ,  with the x-axis being aligned 
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parallel to  the direction of the basic flow. The time evolution of the flow is taken to 
be described by the barotropic vorticity equation 

= 0,  DQ 
Dt 

where D/Dt = a/at + u a/ax + v a/ay and denotes the rate of change following a fluid 
particle, with u and v being velocity components in the x- and y-directions 
respectively. The quantity q is the absolute vorticity, defined by 

av au 
q =f*+Py+---, ax ay 

where f o  +By is the planetary vorticity, fo and p being constants, with p representing 
the gradient of planetary vorticity in the y-direction. It will be taken that the flow 
is incompressible, allowing the definition of a stream function, $, such that 
u = -a@/ay and v = a$/ax. The absolute vorticity may therefore be written in 
the form 

q =f0+Py+V2$. (2.3) 

This may be regarded as an equation for $ in terms of q, which has a unique solution, 
given suitable boundary conditions, so that in the usual way we may speak of the $- 
field induced by a given q-field. The equations (2.1) and (2.3) are therefore, together 
with the boundary conditions, completely sufficient to describe the flow. 

The basic state is taken to be a flow in the x-direction, ( u , v )  = (Ay,O), with A 
constant. The quantity A l p  is then a natural cross-stream lengthscale. The flow 
domain is unbounded in y < 0, but bounded a t  y = yb (> 0) by a rigid wall. The flow 
is disturbed from an x-independent state by spatially periodic corrugations in this 
wall, of small amplitude, O(EA/p) and wavenumber k. The corrugations have the 
effect of imposing v, and therefore a ~ / a x ,  at  y = yb and so force disturbances to the 
flow. 

The presence of the small parameter E allowed SWW to make use of asymptotic 
techniques in solving the evolution equations (2.1) and (2.3) and their method will be 
outlined below, since it leads to the reduced form of the problem to be investigated 
numerically in this paper. 

It is first natural to  write the total stream function as 

+ = - L A  2 Y 2 + 4 2  (2.4) 

so defining a disturbance stream function, $. 
It also proves convenient to redefine the variables $, $, x, y and t in non- 

dimensional form, scaled respectively by the quantities A 3 / p 2 ,  A3 /p2 ,  k-', A / p  and 
B/kA2 respectively. The equation satisfied by $ may then be shown to be 

a a24 ($ + Y G) ( Q +p2 3) + + SJ ($, $ +p2 3) = 0, 

where J is the Jacobian with respect to x and y, and the important dimensionless 
quantity 

P = W P  (2.6) 
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is the ratio of the lengthscale of the forced wave in the x-direction to the cross-stream 
lengthscale A l p .  In this paper y will be taken to be formally O(1). In addition $6 is 
taken to satisfy the boundary condition 

$6+0 asy+co,  ( 2 . 7 ~ )  

and the condition $6 = w(t )  cos x (2.7 b)  

a t  the wall, where the function w describes the amplitudc of the corrugations with 
time. Given an initial condition such as $6 = 0 everywhere before some time to,  (2.5), 
together with the boundary conditions (2.7a, b ) ,  is sufficient to determine $6 for all 
t > to.  

This problem, with the function w(t) taking the value 0 for all t < 0 and the value 
1 for all t > 0, has been studied by a number of previous authors (Dickinson 1970; 
Warn & Warn 1976, 1978; Stewartson 1978; see also Killworth & McIntyre 1985). 
For t = 0(1) the leading-order solution is simply the solution of the linear equation 
obtained by neglecting the term multiplied by 6 in ( 2 . 5 ) .  In  physical terms this 
equation describes the evolution of the flow through the propagation of linear 
Rossby waves and the associated irrotational flow. Its  solution was studied in the 
case y < 1 by Dickinson (1970) and reveals that away from the critical line a t  y = 0 
the wave pattern settles down to a steady state, but that the motion remains 
strongly time dependent in a region about the critical line. The thickness of this 
region, and the characteristic lengthscale of vorticity variations within it, decrease 
as t-l.  Warn & Warn (1976) showed that this decrease in scale would, in the absence 
of dissipation, inevitably lead to the nonlinear terms neglected in (2.5) becoming as 
large as those terms retained when t = O ( E - ~ ) .  The thickness of the region of time- 
dependent motion, would then be O(&. This region is referred to as the nonlinear 
critical layer. For t 2 6-i it is a region of substantial vorticity rearrangement which 
can be regarded as an example of the breaking of Rossby waves. 

Because 6 < 1 the problem contains two divisions of scale, which allowed SWW to 
apply asymptotic techniques and thereby simplify the problem considerably. One 
division is between the timescale for linear Rossby-wave propagation and the 
timescale for nonlinear effects to become important. The second is between the cross- 
stream lengthscale of the disturbances away from the critical layer and the cross- 
stream lengthscale within the critical layer. 

The steps in the SWW formulation which reduce (2.5) to a closed set of equations 
for the motion within the critical layer will now be briefly described. The calculation 
is set out in more detail in SWW, Ritchie (1985) and Killworth & McIntyre (1985). 
Here we follow the notation used by Killworth & McIntyre (1985, $2) as far as 
possible, but cover the cases studied by Warn & Warn (1978) and Ritchie (1985) 
where account must be taken, a t  leading order, of the changing flow within the 
critical layer. It is worth recalling that, a t  leading order, this flow change is not 
induced by the vorticity anomalies in the critical layer itself, but by the vorticity in 
the quasi-steady Rossby wave field associated with such anomalies, which extend 
well away from the critical layer. 

We follow SWW by defining a slow time variable 

T = E f t  (2.8) 

y = &y (2.9) 

which changes by O( 1 )  during the nonlinear evolution, and a stretched y-variable 

which changes by O(1) within the critical layer. 
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Within the slow time formulation the leading-order stream function outside the 
critical layer may be written as 

$(x, y ,  t )  = - +y2 + E$,(x ,  y ,  T) + O ( E ~  In €1. (2.10) 

The function $,(x, y ,  T )  satisfies the steady linear equation for Rossby waves on a 
shear flow. 

(2.11) 

in the two regions y > 0 and y < 0. The general solution to this equation which is 2n- 
periodic in the 2-direction and matches with the boundary condition (2.7b) may be 
written as a Fourier series in the form 

(2.12 a )  

( 2 . 1 3 ~ )  

(2.13b) 

and ( 2 . 1 3 ~ )  

The notation M*(a, b, z )  is used here for the function {T(b)}-’M(a, b,z) .  M(a ,  b,  z )  and 
U(a,  6 ,  z )  are respectively the first and second confluent hypergeometric functions, in 
the notation of Abramowitz & Stegun (1965). The function M*(a, b, z )  is defined for 
all values of b, including non-positive integers. Near y = 0 the functions f,  g, and h 
have the asymptotic forms 

f ( p n ,  Y )  = 1 - y ln Y +a, Y + 0 ( Y 2  lny), (2.14a) 

d p n ,  Y) = Y + 0(Y2) (2.14b) 

h(pn,  Y f  = 1 -yln IYI +a, Y + 0 i Y 2  lny). ( 2 . 1 4 ~ )  and 

The constant a,  is given by 

where u( ) (normally referred to as the psi-function) is the logarithmic derivative of 
the gamma function. Published tables of the functions M*(a, b, z )  and U(a,  b ,  z )  could 
not be found for the values of a and b required here. The functions were therefore 
evaluated using an algorithm based on that of Temme (1983). 

It may be shown that, in the limit p+O+, the functions f ( p n , y ) ,  g(pn, y) and 
h(pn ,  y) are identical to the j, g and h defined by Killworth & McIntyre (1985, 
equations 2.17u-c). 
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It is helpful, at this stage, to define the functions 

i 
m 

A ( z ,  T )  = Re C An(T)einx , 

B(x, T )  = Re ( 'c B,(T) einx 

(n-o 

00 

n-0 

and 
m 

( 2 . 1 6 ~ )  

(2.16 b )  

(2.16 c )  

in terms of the Fourier coefficients introduced in (2.12b, c). 
I n  the inner region the stream function (r is considered to be a function of x, Y and 

T.  The evolution equation in this region may be derived by writing down an 
expansion for (r based on the asymptotic sequence {e ,  eiln e ,  eg, . . .}. The members of 
this sequence arise naturally if eiY is substituted for y in the expression (2.12a), 
taking account of the asymptotic forms of the functions f, g and h. Further 
consideration of the matching requirements on $ between inner and outer regions 
shows that the leading two terms in the expression for the zonally varying part of $ 
must be constant across the critical layer. This leads immediately to  the result that 

A ( z ,  T )  = C ( X ,  T) .  (2.17) 

The stream function in the critical layer may now be written in the form 

$(x, Y,T) = s(-~Y2+C(x,T)(1-~Ye~lne)+s~Yl(s,  Y,T)+O(elne)). (2.18) 

It follows that the leading-order relative vorticity in the critical layer is O(ei). 
Substitution of (2.18) into the governing equation (2.5) leads to 

where 

{ (2.19) 

(2.20) 

is the leading-order vorticity within the critical layer. This equation describes, at 
leading order, the advection of the absolute vorticity around streamlines which are 
contours of the function 

Yo(z, Y, T) = -gyz+C(z, T). (2.21) 

In  order to close the problem it is necessary to find one more equation relating A (x, 
T), B(z,  T), C(x, T) and &,(x, T). This equation may be obtained from the matching 
condition on (ry across the critical layer. It is found that the matching condition may 
be written in the form 

(2.22) 

where the Cauchy principal value of integral is taken, and relates the vorticity field 
in the critical layer to the jump across i t  in the x-component of the velocity. 

If the expression (2.12) is now substituted into the boundary condition (2.7b), and 
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the conditions (2.13a), (2.17) and (2.22) used, we are left with an equation for each 
Fourier coefficient of the form 

m 

f (pn ,Yb)Cn(T)+g(pn ,yb)  QlndY= Wn(T) = an1 W(T) ,  (2.23) 

where a,, = 1 for n = 1 and 0 otherwise. If it  is assumed that the forcing is switched 
on over the outer timescale then the function W ( T )  is defined by W(T)  = w(00) and 
the Fourier coefficients Qln by 

Q1@, Y ,  2’) = Re C &,,(Y, T) einz}. 

The leading-order vorticity equation (2.19) and (2.23) together form a closed system 
and may, in principle, be integrated forward in time from a suitable initial condition. 
Equation (2.23), when divided by f ( p n ,  yb)  to give 

I_, 

{nyo ’ 

where 

(2.24) 

(2.25a, b)  

may be regarded as an explicit inversion of the &-field in the critical layer to give the 
stream function in the critical layer. It should be re-emphasized, however, that the 
corresponding flow field is induced not by the vorticity in the critical layer but by the 
vorticity associated with the quasi-steady wave pattern in the outer flow. The SWW 
solution is valid in the case p = 0, g ( 0 ,  yb)  = 0 and with W ( T )  constant. 

2.2. The case lpnl + co, Icrnl + 00 

Note that there is a possibility that f ( p n , y b )  is zero for some n, in which case the 
quantities pn and cr,, are infinite and some care is needed in interpreting the condition 
(2.24). The set of pairs p and Y b  for which this occurs is extremely small (of measure 
zero). Nevertheless, it is worth considering this case because it gives insight into the 
behaviour when f ( p n ,  yb)  is small and pn and crn large for some value of n, which 
is important when solving (2.19) and (2.24) numerically. The minimum value of 
f ( p n , g b )  is especially small when p is small, since the values of the sequence p n ;  
n = 0 ,1 ,2 ,  . . . are relatively densely spaced. As has already been indicated, this 
regime is of considerable interest. 

In  the special case where f ( p n ,  yb)  = 0 it is best to return to the original form of the 
equation, being (2.23). Under these circumstances Cn(T) disappears altogether from 
this equation, leaving the condition 

(2.26) 

It is clearly no longer possible to use this to calculate C,(T) directly, given &,,(Y, T). 
Instead (2.26) sets a constraint on the evolution of the vorticity field and it is this 
constraint which determines C,, for a t  each instant there is only one velocity field 
which advects the &-field in such a way that the condition (2.26) remains satisfied. 

As discussed by Ritchie (1984; 1985), a configuration in which f ( p ,  y o )  is zero may 
be regarded as corresponding to a resonance in the sense that, provided the Fourier 
coefficient, B,, of the velocity jump is zero, then there is a solution of the steady linear 
equation for q51n which tends to zero as y+- 00 and is also zero a t  y = yb, and which 
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therefore requires no forcing. Ritchie (1984) showed by numerical experiment, 
directly simulating the entire flow without exploiting the matched-asymptotics 
formalism, that if a forcing is applied in such a configuration then the evolution of 
the critical layer towards a reflecting state is accompanied by growth of the forced 
wave, and a corresponding increase in the thickness of the critical layer. Within the 
matched-asymptotics theory, if the configuration is exactly resonant for the forced 
wave, the width of the cat’s eyes, for example, grows without bound. This is how the 
system maintains a non-zero value of B, when the left-hand side of (2.26) is forced 
to be non-zero : physically the expanding cat’s eyes keep entraining fresh q-contours 
and twisting them into configurations whose early stages are in the right phase to 
make B, = 0. Thus, although the system being considered is complicated by the 
nature of the linear wave structure near the critical line, it exhibits some 
characteristics associated with simpler resonant behaviour. 

One question of considerable interest concerns the behaviour when the system is 
resonant for harmonics higher than that of the wave being directly forced at the wall. 
Ritchie (1985) investigated cases where these harmonics were close to, but not 
exactly at, resonance. These higher harmonics are inevitably excited through the 
nonlinear dynamics in the critical layer. Does the resonant harmonic then grow 
without bound (at least within the matched-asymptotics formalism) ‘1 The answer is 
almost certainly no, as may be seen by considering the equations for the quantities 
Q,, and C,, where r is the number corresponding to the resonant harmonic. These 
equations may be obtained by taking the appropriate Fourier coefficient of (2.19) and 
(2.24), and are found to be 

and 

where N, is defined by 

aQ1r - + irYQ,, + irC, = iN, aT (2.27) 

(2.28) 

(2.29) 

The right-hand side of (2.27) therefore represents the forcing of the vorticity in 
harmonic r by the nonlinear terms in (2.19). Suppose we regard this forcing as a given 
function of time. Then (2.27) and (2.28) are linear in the quantities Q,, and C,, and 
in principle may be solved, for instance by taking the Laplace transform of (2.27) 
with respect to time, and then using this transformed equation to eliminate Q,, from 
the Laplace transform of (2.28). This leaves an expression for the Laplace transform 
of C,, which is perfectly well defined in the limit u, + 00. Once C, has been evaluated 
then the result may be substituted back into (2.27) and the resulting equation solved 
for QIr. The important point is that the final expression for Q,, exhibits no degenerate 
behaviour when u, becomes infinite, suggesting strongly that Q,, does not become 
unbounded, contrasting with the case where the resonant harmonic is directly forced 
at the wall. Again, this seems consistent with the physical picture that if a particular 
harmonic grew without bound, the continual entrainment of new q-contours by the 
growing cat’s eyes would, for that harmonic, lead to a non-zero value of the integral 
appearing in (2.26). 
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2.3. The time-integrated absorptivity and the ej‘fect of artificial dissipation 

For future reference it is helpful to apply the argument presented in Killworth & 
McIntyre (1985, tj 1.4) directly to the case being discussed here (in which the critical 
layer is very thin). In  the small-amplitude limit appropriate in the outer flow, the 
flux F appearing in ( 1 . 1 )  has components (;(vt2 - ur2), - u’d), where the prime 
denotes the difference from the x-average, denoted by an overbar. It follows that the 
mean flux of wave activity into the critical layer is just equal to the jump in the 
Reynolds stress across the critical layer, [=I, where the limits are taken in the outer 
flow. This quantity will be referred to as the absorptivity. Matching with the inner 
region, and substitution of the Fourier series expressions for C and Q1 gives the result 
that 

(2.30) 

and gives an equation for the absorptivity in terms of quantities known in the inner 
region. Note from (2.24) that the only contribution to the right-hand side comes from 
harmonics which are directly forced a t  the wall (in this case n = 1) .  

We now derive an alternative expression for the absorptivity, but first allow the 
addition of a dissipative term D to the right-hand side of (2.19). This term might be 
a suitably scaled representation of a physically motivated dissipation, e.g. viscous 
diffusion, in which case i t  takes the form ha2Q/ay2, where A ,  a suitably scaled 
viscosity, is Haberman’s parameter (Haberman 1972), or else a purely artificial 
dissipative term introduced for computational purposes. In  the numerical inte- 
grations such a term is found to be essential in order to inhibit the cascade of 
vorticity to scales which are at the limit of the numerical resolution of the model. 

Taking the x-average (denoted by an overbar) of (2.19) with the dissipative term 

(2.31) 
added leads to - 

a Q l =  aCaQ1 D. 
at ax ay 

Provided that D decays sufficiently rapidly as I yI + co , this equation is multiplied by 
Y ,  and then integrated with respect to Y from Y = - co to Y = 00. The first term on 
the right-hand side may then be integrated by parts and the boundary terms 
estimated to be zero using the asymptotic form of Q1 for large Y ,  to leave, after using 
( 2  

(2.32) 

The time-integrated absorptivity, which we shall refer to as a( T), following Killworth 
& McIntyre (1985), may therefore be written as 

a(T) = JrdT’[x]$ = YdY[&,],T- d T  dYYD. (2.33) 

It follows that if D = 0 then, provided that the integral in the first term on the right- 
hand side of (2.33) remains bounded, a(T) remains bounded for all T. This is an 
alternative derivation of Killworth & McIntyre’s (1985) result, which is allowed in 
the small-amplitude case because the behaviour of the vorticity field as IYI + co is 
rather tightly constrained by (2.19). As may be seen from (2.32), a(T) may still be 
bounded even if D is not zero, providing that the zonal-mean D is zero. In order to  
ensure that a direct relation between the distribution of Q and the time-integrated 

JOT I_:* 
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absorptivity remained true in the numerical experiments, the artificial dissipation, 
when it  was used, was chosen to be such that its zonal-mean part vanished. The other 
condition required of the dissipation was that it should act only on the smallest scales 
resolved in the model. The form of D was therefore chosen to be 

D = -8(a/ax)’Qg,, (2.34) 

with 6 a constant. Equation (2.33) may also be interpreted as a statement about the 
x-average momentum, relating the time-integrated force on the fluid in the critical 
layer to the rate of change of Kelvin’s impulse (and therefore to  the rearrangement 
of vorticity within the critical layer). The form of D chosen in (2.34) is such that no 
net force is exerted on the critical layer. The form of the dissipation means that it is 
inappropriate to define Haberman’s parameter. However the value of S was taken to 
be 7.5N-’, where N was the highest non-zero Fourier coefficient retained in the 
calculation. Thus, broadly speaking, for most of the x-scales in the model, the 
dissipation was weak, but it acted strongly a t  the shortest scales. 

3. Numerical solution of the critical-layer equations 
Systems of equations similar to (2.19) and (2.24) have been integrated by Warn & 

Warn (1978), Ritchie (1985) and Haynes (1985). Given the requirement of periodicity 
in x, it is clearly simplest to solve the corresponding equations for the Fourier 
coefficients, after truncating the Fourier series a t  a finite number of terms, N say. 
Use may be made of the technique, now standard, of evaluating nonlinear terms by 
transforming to a grid, multiplying, and then calculating the Fourier coefficients of 
the product. The equations for the coefficients must then be integrated in time, and, 
in addition, the Y-integral appearing in (2.24) must be evaluated. In principle the 
time integration may be based on evaluating the new Q, field a t  each time step using 
the old stream function, perhaps through the Adams-Bashforth or leapfrog methods, 
and then evaluating the integral in (2.24) to give the C, and hence the new stream 
function. In fact a considerable improvement on this is to use an implicit time- 
stepping scheme for the terms representing advection by the basic shear, which is 
very strong near the edge of the computational domain. Such a semi-implicit scheme 
was used by Ritchie (1985) and Haynes (1985, see $3  and Appendix B). However the 
evaluation of terms representing the advection by the cross-stream velocity, which 
may vary in time, is then still based entirely on information from previous time- 
steps. 

The primary difficulty that arose during this investigation was the requirement 
that the numerical scheme remain accurate for all values of (T,, however large. For 
reasons discussed in $2, the equations are expected to have a perfectly well-behaved 
solution, even when c,, p n  + CO, for some harmonic n, providing that harmonic is not 
externally forced. However it turns out that, if (T, is large for some n and the 
equations are integrated using the semi-implicit scheme outlined earlier, violent 
numerical instability results. It is not difficult to see why this is so ; if J” Qln dY is non- 
zero at  some time then the calculated value of C, used for the next time step will be 
very large. The adjustment process by which J’Q1,dY remains small enough for C, 
to be moderate in size is a very delicate one and, for typical values of (T, which arise, 
can be achieved in the numerical integration only by taking time steps which are 
prohibitively small. This problem was avoided by using a different numerical scheme 
in which the time stepping of Q, and the evaluation of the integral were more closely 
linked. Details of this new scheme are now given. 
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We write the Fourier transform of (2.19) in time-differenced 
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form as 

(1 < n < W ,  (3.1) 

where the superscript T denotes the value of a quantity at  time T and P, is defined 

For n = 0 we may simply integrate using an Adams-Bashforth scheme, to give 
To solve (3.1) for Q?"," we also need the relation (2.24), written in the form 

m 

C,TfAT = pnSnl W(T+AT)+u, 

Note that the terms on the left-hand side of (3.1) are evaluated as in the trapezoidal 
scheme and the nonlinear terms on the right-hand side are evaluated as in the 
Adams-Bashforth scheme. The difference between this scheme and that used in 
Haynes (1985) (and, apparently, that in Ritchie 1985) is that the last term on the 
left-hand side is evaluated as in the trapezoidal scheme rather than as in the 
Adams-Bashforth scheme. It is this difference that makes the scheme stable even 
when one or more of the constants IY,, is very large, or indeed, infinite. 

The two equations (3.1) and (3.2) may be solved for CT+AT, by rearranging (3.1) to 
give an expression for QF;AT, and then integrating this expression with respect to Y 
from - co to 00. Substituting this expression into (3.2) gives a linear equation for 
C y A T ,  and hence that 

dY ) '  Snl W(T) - Jym { Y + 2i/(nAT)} 
aQFAT 

= ( $ + / ~ m { 1 + ~ } Y - 2 i / ( n A T )  U n  

This expression is well defined in the limit IY,, -+ co. (Note that the ratio pn/un 
remains finite in that limit.) An expression for Q,""' may now be obtained by 
substituting (3.3) into (3.1). 

In the computation the integrals and Y-derivatives appearing in (3.3) were 
approximated by finite-difference expressions. The integrals were evaluated between 
the limits of the computational domain, which were at Y = - Y,,, and Y = Y,,,, where 
YmaX was fixed a t  various values greater than or equal to 5 .  It was therefore necessary 
to make some estimate of the contribution to the integral from outside the domain, 
which is particularly important when a disturbance is caused by a forcing that is 
switched on rapidly. A large part of the response then consists of sheared disturbances 
spread over a wide region of the flow, and these give a contribution to the Y-integral 
from outside Y,,, which is initially substantial, although it subsequently decays as 
1/T. The contribution to the integral from disturbances which result from a 
smoothly growing forcing, on the other hand, decay with Y,,, at all times. Haynes 
(1985) described a scheme by which this contribution could be estimated correct to 
O(Y;tx). This scheme can be modified to deal with a flow made up of some 
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disturbances which are forced suddenly (as was expected to be the case in the flow 
simulations to be described later). However the O(Y;n3,,) scheme could not be 
combined with the semi-implicit time-stepping scheme just described, nor could one 
which was accurate to O(Y;i,) not least because the sequence of approximations 
described in Haynes (1985, Appendix) does not remain valid when u,, is very large. 
It was therefore necessary to estimate the infinite integrals by ignoring the 
contribution from outside the computational domain, except in the case of harmonics 
directly forced at the wall (i.e. n = 1 in this case), where the contribution may be 
estimated in terms of a sine integral and the initial forcing amplitude (Warn & Warn 
1978). This approximation is relatively inaccurate, with errors O( Y;Lx). However, 
tests with different domain sizes suggest that choosing Y,,, = 7.5 led to small 
quantitative inaccuracy (less than 5% in B,(T) at T = 10, for example), and no 
qualitative change, in the results of the numerical experiments. Typically, 151 grid 
points were used to cover this domain. Again, this number was chosen on the basis 
of the results of a series of experiments in which the resolution in the y-direction was 
varied. 

4. Numerical experiments: I 
In this section the results of some experiments in flow configurations rather close 

to that for which the SWW solution is valid will be presented. The configurations 
chosen are close in the sense that the wall position yb is taken to be 3.67, the smallest 
value such that the SWW solution is valid in the limit p+O, i.e. such that 
g(0, y,) = 0. I n  practice this ensures that u1 is small for all ,u < 0.5, so that changes 
in the primary harmonic component of the velocity jump do not greatly affect the 
streamline pattern in the critical layer. However, if y is taken to be greater than zero 
the coefficients u,, are not necessarily small for all n > 1. This allows the possibility 
of higher harmonics changing the streamline pattern either through unstable growth 
or simply through their being forced by nonlinear interactions originating in the 
primary wave. In each of the simulations reported the truncation in the zonal 
direction was taken a t  N = 31 (for ,u > 0.2) or else a t  N = 63 (giving 63 or 127 degrees 
of freedom with which to represent the x-variation). 

We shall first consider a case where ,u is small and which therefore lies within the 
parameter range for which the Killworth & McIntyre instability analysis should be 
valid, a t  least qualitatively. The first experiment (experiment A) is in every way 
identical to the SWW case, except that y is taken to be 0.1 rather than 0. Figure 1 
shows a series of pictures of the absolute vorticity distribution within the critical 
layer a t  times T = 3.2, 3.4, and 3.5. For comparison, the SWW absolute vorticity 
distribution is shown in the same manner in figure 2 for T = 3.5. Note that the 
absolute vorticity field is shown only in the region -5 < Y < 5 although the 
computational domain was taken to  be -7 .5  < Y < 7.5. The Fourier series were 
truncated a t  N = 31. There is a spectacular difference between figures 1 (c) and 2. The 
nature of the flow in the former case, from which i t  may be deduced that the absolute 
vorticity field is being advected around secondary cat’s eyes of much shorter 
wavelength than that of the forced wave, is consistent with that expected if the 
instability described by Killworth & McIntyre (1985) and Haynes (1985) occurs. 
Figure 2 of Haynes (1985) shows the effect of the instability a t  one location along the 
primary cat’s eye. To be certain that this instability is indeed important in this case 
it is necessary to make quantitative comparison between the results of the numerical 
experiments and the theory. 
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FIGURE 1. Contours of absolute vorticity, Q, in the critical layer at (a )  T = 3.2, (b )  T = 3.4 and (c) 
T = 3.5 during experiment A, for which I(. = 0.1. The contour interval is 0.5. On the right are graphs 
of the r-average of Q (solid line), the r-average of the quantity Y ( Q - Y )  (dotted line), the time 
derivative of which appears in (2.32), and the basic-state absolute-vorticity profile (dashed line) 
which was present for T < 0. 
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FIG~JRE 2. As figure 1 ,  for the absolute vorticity field given by the SWW solution at T = 3.5. 

First we may estimate the growth rate of the disturbances. This is not completely 
straightforward - the disturbance does not comprise a single harmonic in x and has 
a strongly variable structure along the cat’s eye. However, a t  the times in question, 
the disturbance has a much larger amplitude a t  one location along the cat’s eye than 
a t  any other. We might therefore expect the dominant scale of the disturbance at  
that location, providing that it is sufficiently well-separated from the wavelength of 
the forced wave, and from the lengthscale on which the amplitude ‘envelope’ varies, 
to correspond to a distinct peak in the spectrum of the vorticity or the stream 
function (even though this spectrum is calculated from the functional form over the 
entire length of the cat’s eye). Furthermore, the amplitude of that peak should also 
be roughly proportional to  the amplitude of the disturbance a t  the location where i t  
is largest. 

In fact the peak in the spectrum seems to be shifted some way towards lower 
wavenumbers, as may be secn from figure 3 ( a ) ,  which shows the spectrum of 
enstrophy (squared relative vorticity) a t  various times from T = 1.6 to 3.5,  with 
alternate times (at an interval of 0.1) being shown as solid and dashed curves. For 
comparison the graphs of the enstrophy spectra a t  T = 3.0 and 3.5 are repeated in 
figure 3(6) as solid lines with the corresponding results from the p = 0 case 
superimposed as dashed lines. The strongest peak in the spectrum is at around wave 
10. whereas from figure 1 (c) i t  appears that the local wavenumber of the disturbance 
is about 14 times that of the primary wave. Both the peak in the spectrum, and the 
amplitude of the short-wavelength disturbances as estimated graphically from figure 
1 ,  for example, grow from T = 3.3 to T = 3.5 a t  a rate corresponding roughly to 
doubling in a time unit of 0.1 (an e-folding rate of 0.69). The local instability analysis 
for this time gives the fastest growing wavenumber a t  x = in as 1.12 and the 
corresponding growth rate as 0.59. (For x = and x = zn the relevant wavenumbers 
are 1.47 and 0.97 and the growth rates 0.91 and 0.31 respectively.) The disturbances 
seen here therefore appear to have characteristics which are well within the bounds 
of those predicted by the local instability theory. 

As discussed in § 1 ,  it  is also possible that multiple cat’s eyes might arise as a 
predictable and deterministic part of the evolution of the system, as seemed to be the 
case in Ritchie’s (1985) experiments. A clear indication t,hat for p = 0.1 the basic 
cat’s eye flow is unstable is given by the results of a second experiment (B) in which 
‘noise’ was added to  the system a t  T = 1.5, in harmonics 7-16. The amplitude of the 
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= 1.6 

FIGURE 3. Spectra of enstrophy (squared relative vorticity) integrated across the critical layer, 
plotted against zonal wavenumber. (a)  Experiment A, T = 1.6 to T = 3.5; (b)  experiment A, 
T = 3.0 and T = 3.5 (solid lines), experiment with ,u = 0, T = 3.0 and T = 3.5 (dashed lines). 

noise is such that there are perceptible, but small, differences between the vorticity 
distribution for this experiment a t  T = 2 shown in figure 4(a), and that in the case 
with no noise. The maximum value of the vorticity associated with the noise was less 
than 0.1. Well before T = 3, these differences grow and the associated disturbances 
to the flow saturate, so that at T = 3 the vorticity patterns in the two cases differ 
drastically, as may be seen by comparing figure 4 ( b ) ,  for the case with noise added, 
and figure 4(c), for the case without noise. 

It is also interesting to note from figure l ( c ) ,  for example, that the flow in the 
regions -n < x < 0 and in < x < x is almost completely undisturbed from that in 
figure 2. The reason is the relatively long time that it takes for information to be 
communicated along the length of the primary cat's eye as compared with that for 
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FIGURE 4. As figure 1 ,  for experiment B in which, at T = 1.5, the vorticity field was slightly 
perturbed from that in experiment A. The absolute vorticity field is here shown for (a)  T = 2.0 and 
( b )  T = 2.5.  The unperturbed flow in experiment A at T = 2.5 is shown in (c). 

the growth of the secondary cat’s eyes. Of course, the idea that, on the e-folding 
timescale for unstable disturbances, different locations along the cat’s eye arc 
relativdly independent was the whole basis of the local analysis performed by 
Killworth & Mclntyre (1985) and Haynes (1985). The local growth rates are actually 
largest in the interval -in < x < 0. However the group velocities of the growing 
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modes, i.e. the rate of translation of a packet of disturbances, equal to d(kc,)/dk, 
where k is the wavenumber in the x-direction and c ,  is the real part of the complex 
phase speed, are positive (verified directly during the eigenvalue calculation). A 
packet of disturbances has therefore been growing for a longer time when it is to the 
right of a region in which the unstable growth rates are large and we might expect 
the largest amplitudes to occur there, provided that the instability is a purely 
convective one. A search was made for modes which were absolutely unstable (i.e. 
which grow in place, see e.g. Drazin & Reid 1981, pp. 151-153), but none were found. 

It is clear from figures 1, 2 and 4 that  the instability makes a considerable 
difference to the vorticity distribution within the critical layer. This in turn raises the 
question of the effect of the instability on the absorption/reflection properties which 
are felt well away from the critical layer. In the examples just discussed, where the 
evolution was followed until the instability had reached finite amplitude, there was 
little detectable difference in the graph of B, against T ,  for example. This is not 
unexpected; the effect of the instability in the case of small p is expected to be 
rearrangement of the vorticity over a region of small width in the x-direction. The 
integral (2.22) should therefore be largely unchanged immediately after the first 
growth of the disturbances to finite amplitude. It is expected to change on a slower 
timescale as advection communicates the change in the vorticity field to other 
locations along the cat's eye. 

In order to follow the evolution further it was necessary to introduce artificial 
dissipation, chosen to be of the form (2.34). The experiments A and B reported 
earlier, with p = 0.1, were repeated with this dissipation included and with higher 
resolution in the x-direction, and run out to T = 10. Figure 5(a) shows a typical 
absolute vorticity field during the evolution, in this case in experiment A a t  T = 5.5. 

The graphs in figure B ( b )  show the variation of B,(T) and a(T) in experiments A 
and B. For comparison the variation of B,(T) according to the SWW solution is also 
shown. As may be seen the effect of the instability is apparent in B,(T) at about 
T = 4.5 in experiment A and a t  about T = 3 in experiment B. (Recall that the 
vorticity field was considerably disrupted at about T = 3.5, as shown in figure 1 c . )  The 
effect of the instability in experiment A is therefore to reduce the strength of the first 
over-reflection considerably, but not inhibit i t  completely. After a period of weak 
over-reflection the critical layer returns to a configuration in which it is acting as an 
absorber. There appears to be a tendency for the strength of the absorptivity to 
decrease with time. In  experiment B the unstable disturbances grow to finite 
amplitude earlier and their effect on B,(T) is felt before an over-reflecting state has 
been reached. It appears that in this case the critical layer never acts as an over- 
reflector. Also shown in figure 5(b) is the time-integrated absorptivity a(T) .  For the 
BWW case, when a(T) is simply equal to -+ multiplied by the time integral of B,(T), 
the ultimate value of a(T) is 3.0858 (Killworth & McIntyre 1985). As may be seen 
from figure 5 ( b ) ,  the effect of the instability is to increase this by a factor of two or 
three. 

A similar experiment ( C )  was performed for p = 0.05 (and with increased 
resolution in the zonal direction). No initial noise was added, but as in experiment 
B the instability of the flow allowed disturbances to grow out of the errors associated 
with the computation. The vorticity pictures at T = 2.9 and T = 3.5 are shown in 
figures 6 (a )  and 6 (b). The disturbances appear to have smaller wavelength than in A 
and B;  in fact their dimensional wavelength is comparable. Because the non- 
dimensional wavelength is O(p-l) the number of Fourier components required is a t  
least 3p-', assuming a bare minimum of three waves to represent the disturbances. 



250 P. H .  Haynes 

--I 

X 
--n R 

- 5 '  

-6 

4 T )  

10 

FIGURE 5 .  (a )  As figure 1, for experiment A (p = 0.1) at T = 5.5. (b)  Graphs of absorptivity, B,(T)  
against time T for experiment A (solid curve), experiment B (dashed curve) and SWW solution 
(dotted curve). In  each case B,(O) = -n. Also shown is the time-integrated absorptivity a(T) .  Each 
of these latter curves begins a t  the origin. 

Calculations for smaller and smaller values of p therefore become expensive very 
rapidly. 

The graph of B,(T) for experiment C is shown in figure 7,  together with that for 
another experiment, D, in which noise was added a t  T = 1.5. Note that the over- 
reflection has been inhibited in both cases. Note also that the difference between the 
cases C and D is much less than that between A and B (figure 5). We might 
reasonably suppose that this is because the instability acts relatively more rapidly 
in the former case and because the gross effect of the instability on the critical layer 
is then less sensitive to the details of the evolution of the unstable disturbances. Some 
further ideas on this are presented in $6. It appears in this case that the effect of the 
instability is to increase the ultimate value of the time-integrated absorptivity a( 00) 

to two and a half times that predicted by the SWW solution. 
Also of interest is the behaviour for larger values of p, outside the formal range of 

validity of the local instability theory. The difference in the coefficients p n  and u, 
from the ,u = 0 case make it almost certain that the evolution will be different from 
that predicted by the SWW solution. What is in question is whether it is appropriate 
to interpret this different behaviour as instability. Here we take the working 
definition that the flow may be regarded as being unstable if the evolution is sensitive 
to the introduction of noise and that this instability is closely related to  the local 
shear instability if the sensitivity is exhibited within one turnover time for the basic 
cat's eye flow (i.e. in multiplied by the rotation period of a material line element a t  



Evolution of a Rossby-wave critical layer 25 1 

10 

_.--_ 
~ .._ 

0 

5 

Y 

- 5  

- ----__ 

X 
-71 

- 5  

5 

Y 

- 5  

10 

-71 X 7I 

FIGURE 6. As figure 1 ,  for experiment C with p = 0.05. (a )  T = 2.9, (b )  T = 3.5. 

the centre of the cat's eye). There might well be other instabilities of two-dimensional 
vortex flow which are important in the time evolution over longer periods. 

Numerical experiments were performed for various values of ,u between 0.1 and 1 
(keeping the same wall position yo). For each value of p the tendency towards 
instability was tested by running two experiments, one with a small-amplitude 
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FIGURE 8. As figure 1 ,  for (a )  experiment E and ( b )  experiment F, with initial noise. both at 
T = 3.5 and both with p = 0.25. 

disturbance superimposed, associated with a maximum value of t'he vorticity of less 
than 0.1. Forp = 0.25, experiments E and E', the absolute vorticity fields at, T = 3.5 
are shown in figures 8 (a )  and 8 (6) respectively. Differences between t,he evolution in 
the two experiments may also be seen in the absorptivity curves, shown in figure 9. 
In particular the ultimate value of the integrated absorptivity appears likely t'o be 
about 30% larger in P than in E. When p was increased to 0.4, experime,nts G and 
H, the sensitivity to the introduction of noise was markedly less, as may be seen from 
figures 10(a)  and l O ( b ) ,  which show the absolute vorticity fields a t  T = 4.0. 

These results might lead us to conclude that the instability plays an important role 
in the evolution for ,u < 0.25, but not for larger values. Does resonance also play a 
role Z For this choice of yo, the fourth harmonic is in fact very close to resonance when 
p = a; the third is close when p = 5, the fifth when ,u = &, and so on. There is therefore 
a sense in which the system is far from resonance when p = 2/ (21+ l ) ,  I = 1,2 ,3 ,2 ,  . . . . 
Experiments were therefore run for ,u = $ (I) and p = (J), to investigate whether 
any markedly different behaviour could be detected from the case p = 0.25. 
Experiments G and H, figure 10, with p = g, are also relevant. Figures 11 ( a )  and 
1 1  (6) show the absolute vorticity fields in experiments E and J respectively a t  
T = 4.0. Figure 12 shows the evolution ofB,(T) in experiments E, I and tJ. There does 
not appear t o  be any qualitative difference between the resonant and non-resonant 
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FIGURE 9. As figure 5 ( h ) ,  for experiment E (solid line), F (dashed line), both with ,u = 0.25, 
and the SWW solution (dotted line), with ,u = 0. 
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FIGIJRE 10. As figure 1 ,  for (a )  experiment G, and ( b )  experiment H, with initial noise, 
both at T = 4 and both with ,u = 0.4. 
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FIGURE 12. As figure 5 ( b )  for experiment I (solid curves), experiment J (dashed curve) and 
expriment  E (dotted curve). I and J both have no harmonics near resonance. E has the fourth 
harmonic near rewnance 
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cases, indicating again that  the resonance of highcr harmonics is not important in the 
time evolution of the flow in the critical layer, a t  least during this early, essentially 
inviscid, stage. 

5. Re-examination of Bbland’s numerical experiments 
It has already been remarked tha t  BBland’s (1976) experiments showed up 

interesting small-scale structure in the critical layer, e.g. in his figure 4(c) at T = 59, 
86. (Bdand’s figures are reproduced in Killworth & McIntyre 1985. figure 5.) It has 
been suggested that  this is either a manifestation of the resonance of higher 
harmonics (Ritchie 1985) or of local instability (Killworth & McIntyre 1985). It 
should also be noted that  the short-wave features in BBland’s figure are at the limits 
of his numerical resolution, since only six harmonics were included in the r-direction. 
There is also evidence of strong grid-scale structure in the meridional vorticity 
gradient, seen in his figure 7(6). It was decided to  attempt to  reproduce BQland’s 
results in order t o  confirm tha t  the behaviour seen was not sensitive to  resolution and 
also to allow more detailed investigation which might throw further light on the 
question of instability versus resonance. 

BBland’s experiments were repeated in two ways. First the matching constants ,on 
and u,,, were calculated for the relevant flow profile and external parameter values. 
Details of this calculation, following Warn & Warn (1978), are given in Appendix A 
and the results are displayed in table 1. Note tha t  nonc of these numbers seems 
particularly large, indicating that  resonance (of the forced harmonic or of higher 
harmonics) is unlikely to  be important, whether or not one accepts the stronger 
conclusions of 552.2 and 4 concerning resonant effects. The critical-layer motlcl was 
run with these values of pn and u,,,. Secondly a channel model (developed from a 
model originally supplied by Dr P. D.  Killworth) was run with the parameter values, 
flow configuration and numerical resolution used by Bdand,  except that  the number 
of zonal harmonics was increased from 6 to  31. Some details of this calculation are 
given in Appendix B. It is, of course, entirely independent of matched-asymptotic 
concepts. Whilst this method was relatively inefficient and expensive, because high 
resolution was needed over the whole flow domain not just the critical layer, it was 
well within computing resources typical of those widely available now (as opposed to  
ten years ago). 

Contour plots of absolute vorticity from the two models, a t  corresponding times, 
are shown in figures 13 and 14. Note tha t  the former corresponds to  a thin slice taken 
from the central region of the latter. I n  both models the vorticity pattern in the 
critical layer appears to  break up into features with zonal lengthscale smaller than 
that  of the forced wave. I n  both cases there are three such features the central one 
is longest and has largest extent in the y-direction, the other two do not extend so 
far in the y-direction and the leftmost is the longer of the two. Agreement between 
the two models is therefore about as good as could be expected. These features are 
also qualitatively similar t o  those seen in Bdand’s experiment. Close agreement 
would seem unlikely given the low zonal resolution of Bdland’s model. Sensitivity to  
noise inserted in the vorticity field was seen in the evolution of both models, as we 
might have expected from the fact t ha t  the value of p for these experiments was 0.25. 
Taking these results together with those of 552.2 and 4, we conclude, in all likelihood 
tha t  local instability, and not resonance, played a significant role in the evolution of 
the disturbances seen in Rdand’s experiments. 
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n P n r, 
0 - 1.539 -0.931 
1 -1.086 -0.650 
2 -0.559 -0.290 
3 -0.304 -0.295 
4 -0.212 0.314 
5 -0.478 3.128 
6 0.048 -1.038 
7 0.003 -0.533 
8 0.002 -0.379 

TABLE 1 .  Matching const,ants for the first eight harmonics for the flow configuration 
used in BClarid’s (1  976) numerical experiments 
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FIGURE 13. As figure 1. for experiment in Beland’s configuration at T = 5.0. 
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-2.5 --A -n X 1 - 2 . 5  

FIGURE 14. ( a )  Contours of absolute vorticit,y, at T = 65, in an experiment designed to hr as close 
as possible t,o Beland’s, except that  the z-resolution is much finer. The model had 401 grid points 
arross the domain and represented 2-variation using a 3 I harmonic speetral expansion. Note that  
the entire flow is shown. not, just the critical layer. ( 1 ) )  The z-average of the absolute vorticit,y 
profile. 
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6. A simplified model of the effect of the instability on absorption and 
reflection 

The numerical experiments described in the previous two sections have used direct 
numerical simulation of the flow in the critical layer to assess the effects of the shear 
instability. The results confirm what we might have expected from the stability 
analysis in Killworth & McIntyre (1985), that  the instability is most effective in the 
limit u+O. The minimum value of p for which a simulation was run was 0.05. For 
reasons already mentioned, the computational resources requiredJ for still smaller 
values of p are very large. Nonetheless, it  is interesting to consider the limit p+O. 
In this limit the turnover time for the eddies is much less than for the flow as a whole. 
We might imagine that the large-scale flow then depends only on some statistical 
measure of the eddies, rather than details of individual eddies. It seems likely that 
in this limit the family of curves which form graphs of B, against time (as shown in 
figures 5 ( b )  and 7,  for example) tend to some limiting shape. 

Although direct numerical simulation is out of the question for very small values 
of p,  there remains the possibility of investigating the limiting shape by somehow 
modelling the effects of the instability. The model described and applied in this 
section is based on the idea that, for small p, the instability is expected to grow very 
rapidly in comparison with the rate a t  which the basic flow evolves (Killworth & 
McIntyre 1985; Haynes 1985). The basic model assumption is that, as soon as the 
gradient of absolute vorticity reverses sign at any point along the critical layer, the 
effect of the instability is to adjust the local vorticity profile until it becomes stable. 
The cat’s eye flow then acts upon it in such a way that it inevitably becomes 
unstable, and the process repeais. 

To carry this idea further, and make it precise 
model, let us recall the implications of the zonal 
critical layer, i.e. (2.33) with D = 0, being 

ag - acaQ 
aT a x a y .  
_ _ _ _ _ _  

enough to define the simplified 
mean vorticity equation in the 

Just  as in 32, this equation may be multiplied by Y and integrated with respect to 
Y across the critical layer to give 

YQdY=-jymY--dY m@ 
ax ay 

- 
m ac 

The second equality may be demonstrated by integrating by parts and using the 
asymptotic form of Q as IYI + 00, the third by using the matching conditions with the 
outer flow. As remarked in 32.3, it may be shown that the only terms which 
contribute are those which are directly forced at  the wall, in this case only the first 
harmonic n = 1. This may be regarded as a consequence of the fact that, in this flow 
configuration, the convergence of the momentum flux into the critical layer is equal 
to the force exerted on the flow a t  the wall. The presence of the wall, together with 
the quasi-steady property of the wave field, means that there can be no momentum 
flux associated with the systematic propagation of wave activity away from the 
critical layer in higher harmonics, whether they arise through the instability, or 
through any other cause. 
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This result may now be used to constrain the possible parametrizations of the 
effect of the short-wavelength rapidly growing instability on the large-scale flow. The 
vorticity equation may be written in the form 

where the quantities Q and C are taken to represent only the slowly varying parts of 
the absolute vorticity and stream-function fields and F represents the averaged 
effects on the large scale of the nonlinear terms associated with the rapidly varying 
part of the flow. There is no contribution to F from those harmonics which are 
directly forced and, from the arguments given earlier, it  is therefore required that F 
does not result in an artificial source or sink of momentum. A repeat of the analysis 
leading to (2.31), applied to (6.3), shows that an artificial momentum source will be 
avoided if F satisfies the constraint 

m 

YFdY = 0 (6.4) 

at  each point along the critical layer. 
Within this restriction there are still an enormous number of possible forms of F 

which may be chosen. Given that the parametrization is to be implemented within 
a numerical model it seems easiest to specify F within a numerical scheme. The 
chosen method will now be described. 

At each time step the Q-field is incremented in two stages. First the &-field is 
changed as if it was advected solely by the large-scale flow over a time interval AT, 
say. Because the special case g(0, yb) is being considered, where the velocity field in 
the critical layer is independent of the vorticity field in the critical layer (C = cosx), 
it is convenient to use a rather crude semi-Lagrangian method for this part of the 
time step. A grid of equally spaced x-values (ranging from --7c to 7c) and of equally 
spaced Y-values (ranging from - Y,,, to Y,,,) is set up. An array of ordered pairs 
(xo, Y,) is then calculated, each member of the array corresponding to a point on the 
grid, and being the x- and Y-coordinates of the starting position of a particle that 
would arrive a t  the point on the grid a time AT later. The updated value of Q a t  a 
given point (x, Y) was therefore calculated by evaluating the old Q-value a t  the 
corresponding ‘departure ’ point (xo, Y,) using linear interpolation on the grid. 

The next part of the time step depends on whether the Y-derivative of the new Q- 
field was everywhere positive, or changed sign somewhere in the domain. At those 
values of x for which i3Q/aY was positive for all Y ,  no further adjustment is made 
to the Q-field. On the other hand, a t  those values of x for which aQ/aY is negative 
for some range of Y, the effect of the instability is modelled by redistributing the 
Q-field in the Y-direction in the manner shown in figure 15. The redistribution is 
taken to be such that, in the simplest case, the adjusted aQ/aY is non-negative every- 
where and the adjusted Q-field at the value of x in question takes the constant 
value, Q, say, between Y = Y- and Y = Y+. I n  more complicated cases, where 
the Q-field before adjustment includes more than one contiguous region of 
reversed gradients, it  is necessary to have a number, I ,  of regions with, again a t  
given x, Q = Qg), Y? < Y < Yy), i = 1 , .  . . , I .  
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FIGURE 15. Adjustment scheme for the absolute vorticity field. The solid curve shows the absolute 
vorticity profile a t  a given value of x plotted against Y.  The dashed curve shows the adjusted 
profile, which takes a constant value Q,  between Y = Y+ and Y = Y-. In  order that total absolute 
vorticity is conserved, the net positive and negative contributions from the shaded areas cancel. 
The contributions from the Y-weighted areas must also cancel, to ensure no artificial momentum 
source (see text). 

Each adjustment depends on the three constants Y-, Y+ and Q, and therefore 
requires three constraints in order to be specified uniquely. The first is that 

so that total vorticity is conserved. The second is that 

1: Y(Q-&m)dY = 0 

as implied by (6.4) and ensuring that there is no artificial source of momentum in the 
critical layer. The third condition has to be chosen more arbitrarily. For the vorticity 
gradients to be one-signed after the adjustment has been applied, Q, must be such 
that Q(Y-) < Q, < Q(Y+) and, bearing this in mind, we specify the third condition as 

It is shown in Appendix C that this condition implies that  the width lY+ - Y-1 of the 
mixed region is maximized, subject to the constraints (6.5) and (6.6). The 
computational problem therefore reduces to  solving (6.5), (6.6) and (6.7), given an 
unadjusted profile &(Y). Details of the algorithm used, which required some delicacy, 
are presented in Appendix D. 

The model was run with a number of different resolutions in the 5- and Y-directions 
and with a number of different values of AT. The results presented are for resolutions 
a t  which further increase gave no qualitative change in the behaviour. Figure 16 
shows a typical configuration of the vorticity field during the evolution, a t  T = 3. 
This might therefore be compared with figure 6, for example, showing the vorticity 
field a t  a similar stage during the direct simulation, with ,u = 0.05. The variation of 
B, and the time-integrated absorptivity with time are shown in figure 17. The value 
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FIQURE 16. As figure 1, for an experiment in which the absolute vorticity field was adjusted 
under the scheme depicted in figure 15. The absolute vorticity field is shown at T = 3.0. 

of a(10) predicted by this model was 8.15. (Compare the SWW result of ~ ( c o )  = 

3.0858.) For comparison the corresponding curves from the direct simulation are 
superimposed. Considering the crudity of the model, it  gives surprisingly close 
quantitative agreement with the direct simulation. This agreement lends support to 
our earlier picture of the evolution for small p ,  i.e. rearrangement of the vorticity 
field in the critical layer by the flow associated with the unstable disturbances, 
inhibition of over-reflection and much more gradual attainment of a reflecting state. 

A second mixing algorithm was also tried, in which the requirements were (6.5), 
together with &, = &(Y-) = &(Y+). A typical adjustment under this scheme is shown 
in figure 18. It may be seen that 

Considerations similar to those in $2.3 suggest that such an adjustment requires a 
momentum-flux convergence into the critical layer and must therefore be associated 
with a flux of wave activity away from the critical layer. As discussed earlier, this is 
not possible within the configuration considered here, where the waves are forced a t  
a wall, but would be possible if some alternative boundary condition, perhaps a 
radiation condition, were applied. Of course, altering this boundary condition would 
violate the conditions necessary for the SWW-like case in which the stream function 
pattern in the critical layer is independent of time and, strictly speaking, the 
numerical method used in this section for following the evolution of the cat’s eye flow 
as a whole would not be applicable. Nonetheless, as a heuristic exercise, the second 
mixing algorithm was applied to the SWW case, overlooking the inconsistency. 

The graphs of B, and related quantities against time for this experiment are shown 
in figure 19. B, may now remain positive (or negative) for all time, since the 
associated contribution to the absorptivity may be cancelled by contributions from 
higher harmonics. Also of interest is the behaviour of the total time-integrated 
absorptivity, including all harmonics, as diagnosed from the time integral of the first 
term on the right-hand side of (2.33). This is shown as the dotted line in figure 19. 
Taken a t  face value, and when compared with figure 15, this suggests that there 
might be a tendency for the critical layer to  be less absorptive (in the time-integrated 
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FIGURE 17. As figure 5 ( b ) ,  for an experiment in which the absolute vorticity field was adjusted 
(solid curves), for experiment C with ,u = 0.05 (dashed curves) and for the SWW analytical solution 
(dotted curves). 

FIGURE 18. Adjustment scheme for the absolute vorticity field which requires a net source of 
momentum in the critical layer. As for figure 15, except that the Y-weighted areas do not cancel. 

FIGURE 19. As figure 5 ( b ) ,  for an experiment in which the absolute vorticity field was adjusted 
under the scheme depicted in figure 18 (solid curves) and for the SWW analytical solution (dashed 
curve). The time integral of 1$,(T) is shown in place of the absorptivity a(T).  The dotted curve 
shows the quantity J YQ1 dY plotted on the same scale. 
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sense) when there is the possibility of net re-radiation into the outer flow. Of course, 
more careful study would be required before any definite conclusion could be reached 
on this point. 

7. Discussion 
The new work in this paper has been almost entirely based on numerical 

simulations, and it is therefore important to establish that the simulated time 
evolution of the nonlinear critical layer represents fluid-dynamical reality, and is not 
the result of artificial numerical instability, for example. As has been stressed earlier, 
the majority of the numerical experiments reported here have been repeated a t  
different resolution, both with different numbers of harmonics in the x-direction, and 
with different grid and domain sizes in the y-direction. Good quantitative agreement 
has been found between different versions, provided, of course, that the resolution 
was fine enough. Furthermore, the behaviour seen in the simulations is entirely 
consistent with the local instability theory of Killworth & McIntyre (1985) and 
Haynes (1985). It seems almost inconceivable that the superposition of s-harmonics 
necessary to produce the field shown in figure 6 ( b ) ,  for example, which is physically 
highly plausible, could have arisen through numerical artifact. 

The most important conclusion to be drawn from this work concerns the 
temporary absorptivity of the critical layer. Whilst, under appropriate conditions, 
the time-integrated absorptivity remains bounded whatever the details of the flow in 
the critical layer (Killworth & Mclntyre 1985), what is now clear is that these details 
can have a drastic effect on instantaneous values of the absorptivity, and thus on the 
numerical value of the time-integrated absorptivity. For instance, it appears that the 
effect of the local barotropic instability in the critical layer can be to increase the 
time-integrated absorptivity to three or four times the value predicted by the SWW 
solution (see figures 5 and 6). The growth of unstable disturbances and the 
subsequent rearrangement of the vorticity field over a region wider than the width 
of the cat’s eyes has the effect of inhibiting any over-reflection almost completely, as 
well as considerably increasing the time-integrated absorptivity. Indeed, Killworth 
& McIntyre’s bound is sensitive to the effective width b of the region subject to 
vorticity rearrangement, going like b3. Presumably this change in the matching 
condition across the critical layer has implications, not only in thc forced-wave 
problem, but also where the waves are growing on an unstable shear flow, as studied 
recently by Churilov & Shukhman (1987), where it would presumably lead to an 
increased prediction of the saturation amplitude in the inviscid case. 

For small values of p (i.e. <0.2), the instability is spectacular in its effect on the 
critical layer, as was expected on the basis of the theory presented by Killworth & 
McIntyre (1985). As p is increased the effect of the instability becomes less 
remarkable, although there are still grounds for regarding the flow as unstable, even 
up to values of p of about 0.3, on the basis that the flow exhibits sensitivity to initial 
conditions. In  the flow configurations investigated there does not seem to be any 
evidence for changes in the character of the flow when higher harmonics are resonant. 
However. there does not seem to be any reason to doubt the conclusion of Ritchie 
(1985) that  on long timescales, when gross features of the flow are determined by 
weak dissipative processes, there may be more sensitivity to resonance. The author 
has independently reproduced Ritchie’s results in these parameter regimes. It may 
also be that resonant effects would show up more strongly in flow configurations for 
which crl was not small. The reason why Ritchie (1985) did not find unstable 
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behaviour was that the viscosity he chose was so large that the reversals achieved in 
the absolute vorticity gradient were rather weak. There is evidence of this from his 
figures 6 and 7, for example. 

Under geophysical parameter regimes (where there seems little a priori reason for 
introducing dissipation in the form of a constant diffusivity) it seems that reversed 
gradients are commonplace and Juckes & McIntyre (1987) have recently reported 
high-resolution numerical simulations in which the accompanying shear instability 
is clear. In such simulations the nonlinear critical layers are no longer thin, 
but the essential dynamics are very closely related. However, the effect on the 
absorption/reflection properties in the simulati'ons has not yet been quantified and 
the small-amplitude results in figures 5(b )  and 7, for example, are therefore our 
first indication of that effect. 

What has also become clear from the work reported here, and from previous work 
already cited, is that the critical-layer equations (2.19) and (2.24) admit solutions 
with a large range of different behaviour, despite the fact that they are considerably 
simplified from the equations for two-dimensional flow in general. Any numerical 
work, such as that presented in this paper and the earlier literature can only 
investigate a relatively small set of external parameters. It is interest,ing to speculate 
on whether, for example, the system does always eventually settle down to a steady 
state when a steady forcing is applied. The work of Ritchie (1985) and experiments 
done by this author, suggest, but do not prove, that it does not. And if this is not the 
case, is the eventual time-dependent motion periodic, or irregular 1 The results 
presented in $4, for example, suggest that with small but non-zero dissipation a 
disordered motion, which one might call ' critical-layer turbulence ', is a strong 
possibility. 
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and on the CRAY-1 in London, courtesy of the University of London Computing 
Centre, while the author held a Research Fellowship a t  Queens' College, Cambridge, 
and subsequently a Royal Society Meteorological Office Research Fellowship in 
Dynamical Meteorology. Additional support during the preparation of the 
manuscript was provided by the IJS Office of Naval Research. The work benefited 
from conversations or correspondence with S. J. Cowley, P. D. Killworth and M. E. 
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Appendix A. Calculation of ,on and un for a general flow profile 

forms (2.13a, b ,  c )  but are solutions of the differential equation 
For a general profile the functionsf(p,y),g(,un,y) and h ( p n , y )  do not take the 

where U and G are the velocity and vorticity-gradient distributions, non- 
dimensionalized using the local values of shear A and vorticity gradient p a t  the 
critical line y = y,. We thus have U(y,) = 0, U'(y,) = 1 and G(y,) = 1.  Two 
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independent solutions of (A 1) may be specified by their asymptotic forms near the 
critical line, 

Xa(P% Y) = 1 - (Y- Yc) In lY--Y,I-t W l Y  - Y J 2  In tY-Yc)) (A 2a)  

and Xb(pn ,Y)  = ~ - Y C + ~ ( ( Y - ~ C ) ~ ) .  (A 2b) 

f ( p n ,  y) = X a ( p n ,  y) X b ( p n ,  y) (y ’ yc) ,  (A 3a) 

g(p% 2 / )  = X*(P% Y) (Y ’ Yc) (A 3 b )  

and h(pn, y) = Xa(pn, y) X b ( p n ,  y) (y < Yc), (A 3c) 

By analogy with (2.13) and (2.14) we may write 

where the constant a, is chosen such that h(pn ,y )  satisfies the required boundary 
condition as y + - 00 or a t  some other boundary in y < yc. These forms may then be 
substituted in ( 2 . 2 5 ~ )  and (2.25b) to give p n  and c,,. 

The problem therefore reduces to that of calculating the constant a, and the 
functions and xb,  which may be done through numerical integration of (A 1 )  with 
appropriate care near the singular point a t  y = yc. 

Appendix B. Repeat of Beland’s numerical experiments 
Equations (2.1) and (2.3) were solved in a channel geometry, with boundaries a t  

y = 5 2.5. The basic vorticity gradient /3 was taken to be 1.6 and the flow specified 
to  be (u, w) = (tanh y, 0) at t = 0. The boundary conditions were taken as $ = 0 a t  
y = -2.5and$ = 0.009cos(0.4~)[1-cos7ct/3.5](fort < 3.5)and$ = 0.018cos(0.4)~ 
(for t > = 3.5) a t  y = 2.5. The matching constants for a critical-layer problem in 
which these were the specified boundary conditions were calculated using the method 
described in Appendix A (see table 1 ) .  It was found that there was little change in 
the matching constants when the value of y was decreased from -2.5 and it was 
concluded that there were no serious differences between using these boundary 
conditions and those used by BBland (1976, 1978), where a radiation condition was 
applied for negative y. BBland used a different function of time in the boundary 
condition a t  y = -2.5, in which the value of @ increased linearly to its steady state 
value at t = 3.5. The function used here has continuous first and second derivatives 
a t  t = 0 and a t  t = 3.5. 

The above configuration may be represented in terms of the non-dimensional 
quantities introduced in 52 by taking p = 0.25, 8 = 0.06 and Y b  = 1.5. A time unit on 
the dimensionless ‘ inner ’ timescale represents a dimensionless time interval in the 
channel model of about 11.  The critical-layer thickness is about 0.11. Inspection of 
the results from the two models suggested that the times t = 65 and T = 5.5, for 
example, were roughly equivalent, and these are in a ratio which seems entirely 
consistent with the scalings, bearing in mind the level of precision of the comparison. 

Appendix C 
It is required to show that one root of (6.7) maximizes Y+-Y- subject to  the 

constraints (6.5) and (6.6). Note that Q, may be eliminated from (6.6) using (6.5) to 
give the single constraint 

lz&(Y-&Y++Y-))dY = 0. 
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If Y+ and Y- vary by the amounts 6Y+ and 6Y- respectively, then the first variation 
in (C 1) implies that 

This may be written in more succinct form as 

If IY+- Y-I is made stationary as Y- and Y+ vary subject to (C l),  then GY+--SY- = 0, 
and (C 3) leads to (6.7), i.e. that 

&, = S(&(Y+)+&(Y-)). (C 4) 

It remains to  identify which roots of this equation are of interest. The easiest case to  
consider is that  where (for given x) there is a single region in which aQ/aY < 0. 
Suppose that this region is the interval (Y?,F;)). ( C 3 )  represents a differential 
equation which describes the locus of the points Y-, Y+ which satisfy (C 1). After some 
analysis it may be shown that this locus begins a t  (Y-, Y+) = (Y?, Yy) )  and ends a t  
(Y-, Y+) = (Yy),  Yy)).  The quantity dY+/dY- is negative a t  (Y?, P), positive on some 
intermediate part of the locus, becomes unbounded when Y- stops increasing and 
begins to decrease, and then remains negative until (Yy ) ,  Yy)). Thus Y+- Y- 
has one maximum on the intermediate part of the locus where dY+/dY- > O ,  
&(Y-) < &, < &(Y+) and therefore, as may be seen by considering figure 15 in the 
light of (6.5), Y- < YE) and Yr)  < Y+. When there is more than one region where 
aQ/aY < 0 i t  is not straightforward to show that there is only one local maximum 
in Y+ - Y- although numerical evidence suggests that this is the case. 

Appendix D 
The algorithm used to find the roots of (6.5), (6.6) and (6.7) (or equivalently (C 1 )  

and (C 4) was based on consideration of the locus in the (Y-, Y+) plane of points 
satisfying (6.5) and (6.6) (or equivalently (C 1)) only. The &-field at the various grid 
points was carried along in the calculation and so for the purposes of the adjustment 
the profile was specified a t  a finite number of values of Y. These values were 
interpolated linearly to give a continuously varying (but not differentiable) profile on 
which the problem to be solved was well-posed. 

The adjustment algorithm has two stages. 
(i)  The value of Y+ was fixed a t  Yy) and the equation (C l ) ,  with the requirement 

Y- < Y!?, was solved for Y- using interval halving. This gave one solution with 

(ii) Y+ was increased by increments, and for each Y+, the Y- satisfying (C 1) 
was calculated using interval halving. The first guesses for Y- were generated 
using the expression for the derivative (C 3). When &, was found to be less than 
;(&( Y,) + &( Y-)) the procedure was modified to interval halving on Y+, followed 
at  each stage by interval halving on Y- to solve (C l),  until &,-t(&(Y+)+&(Y-)) was 
sufficiently small. 

This method might appear cumbersome, but was sufficiently well conditioned that 
it gave solutions for all the profiles encountered, including those for which there was 
more than one Y-interval on which a&/aY < 0. 

&, > $(Q(T+) +&fY-)). 
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